府食第128号 令和4年3月16日

厚生労働大臣 後藤 茂之 殿

食品安全委員会 委員長 山本 茂貴

食品健康影響評価の結果の通知について

令和3年4月22日付け厚生労働省発生食0422第1号をもって厚生労働大臣から食品安全委員会に意見を求められた添加物「 $Bacillus\ subtilis\ NTIO4$ (pHYT2TD) 株を利用して生産された α -グルコシルトランスフェラーゼ」に係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添1のとおりです。

また、本件に関して行った国民からの意見・情報の募集において、貴省に関連する意見・情報が別添2のとおり寄せられましたので、お伝えします。

記

「Bacillus subtilis NTI04 (pHYT2TD) 株を利用して生産された α -グルコシルトランスフェラーゼ」については、「遺伝子組換え微生物を利用して製造された添加物の安全性評価基準」(平成 16 年 3 月 25 日食品安全委員会決定)に基づき評価した結果、人の健康を損なうおそれはないと判断した。

遺伝子組換え食品等評価書

 $Baci / lus \ subti / is \ NTIO4 (pHYT2TD) 株を利用して生産された <math>\alpha$ - グルコシルトランスフェラーゼ

令和4年(2022年)3月

食品安全委員会

目 次

			良
<審	議の	経緯>	3
く食	品安	! 全委員会委員名簿>	3
く食	品安	·全委員会遺伝子組換え食品等専門調査会専門委員名簿>	3
要	糸	J	4
I.	評価	i対象添加物の概要	5
Ⅱ.	食品	健康影響評価	5
第	§ 1	安全性評価において比較対象として用いる添加物及び宿主等の性質並び	 =
	遺	伝子組換え添加物及び組換え体との相違	5
	1	従来の添加物の性質及び用途等に関する資料	5
	2	宿主及び導入 DNA	6
	3	宿主の添加物製造への利用経験又は食経験に関する資料	6
	4	宿主の構成成分等に関する資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	5	遺伝子組換え添加物の性質及び用途等に関する資料	6
	6	安全性評価において検討が必要とされる遺伝子組換え添加物と従来の添	加
	物	及び組換え体と宿主等の相違点	7
第	<u>5</u> 2	宿主に関する事項	7
	1	分類学上の位置付け(種名(学名)・株名等)に関する事項	7
	2	病原性及び有害生理活性物質等の生産に関する事項	7
	3	寄生性及び定着性に関する事項	7
	4	病原性の外来因子(ウイルス等)に汚染されていないことに関する事項	7
	5	宿主の近縁株の病原性及び有害生理活性物質の生産に関する事項	7
第	5 3	ベクターに関する事項	8
	1	名称及び由来に関する事項	8
	2	性質に関する事項	8
第	5 4	挿入 DNA、遺伝子産物、並びに発現ベクターの構築に関する事項	
	1	挿入 DNA の供与体に関する事項	8
	2	挿入 DNA 又は遺伝子(抗生物質耐性マーカーを含む。)及びその遺伝子産	物
	O	性質に関する事項	9
	3	挿入遺伝子及び抗生物質耐性マーカー遺伝子の発現に関わる領域に関す	る
	事	項	
	4	ベクターへの挿入 DNA の組込方法に関する事項	10
	5	構築された発現ベクターに関する事項	10
	6	DNA の宿主への導入方法に関する事項	
	7	抗生物質耐性マーカー遺伝子の安全性に関する事項	11
第	5	組換え体に関する事項	
	1	宿主との差異に関する事項	
	2	遺伝子導入に関する事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第	6	組換え体以外の製造原料及び製造器材に関する事項	12

1	添加物の製造原料又は製造器材としての使用実績があること	12
2	添加物の製造原料又は製造器材としての安全性について知見が得られて	てい
	ること	12
第7	遺伝子組換え添加物に関する事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
1	諸外国における認可、食用等に関する事項	13
2	組換え体の残存に関する事項	13
3	製造に由来する非有効成分の安全性に関する事項	13
4	精製方法及びその効果に関する事項	13
5	含有量の変動により有害性が示唆される常成分の変動に関する事項	13
第8	第2から第7までの事項により安全性の知見が得られていない場合に必	シ要
	な事項	13
Ⅲ. 食	品健康影響評価結果	13
く参照	l>	14

<審議の経緯>

2021年4月22日 厚生労働大臣から遺伝子組換え食品等の安全性に係る食品健

康影響評価について要請(厚生労働省発生食0422第1号)、

関係書類の接受

2021年4月27日 第814回食品安全委員会(要請事項説明)

2021年5月26日 第211回遺伝子組換え食品等専門調査会

2021年12月22日第220回遺伝子組換え食品等専門調査会

2022 年 1 月 25 日 第 845 回食品安全委員会 (報告)

2022年1月26日から2022年2月24日まで 国民からの意見・情報の募集

2022年3月9日 遺伝子組換え食品等専門調査会座長から食品安全委員会委員

長に報告

2022年3月15日 第851回食品安全委員会(報告)

(3月16日付け厚生労働大臣に通知)

<食品安全委員会委員名簿>

2021年6月30日まで 2021年7月1日から

佐藤 洋 (委員長) 山本 茂貴 (委員長)

川西 徹 (委員長代理 第二順位)

吉田 緑 脇 昌子 (委員長代理 第三順位)

香西 みどり 香西 みどり

堀口 逸子 松永 和紀

吉田 充 吉田 充

く食品安全委員会遺伝子組換え食品等専門調査会専門委員名簿>

2021年9月30日まで 2021年10月1日から

中島 春紫 (座長) 中島 春紫 (座長)

児玉 浩明 (座長代理) 山川 隆 (座長代理)

安達 玲子 近藤 一成 安達 玲子 小野 竜一

岡田 由美子 樋口 恭子 小関 良宏 樋口 恭子

小関 良宏 山川 隆 小野 道之 藤原 すみれ

小野 竜一 吉川 信幸

橘田和美

<第 220 回遺伝子組換え食品等専門調査会専門参考人名簿>

児玉 浩明(千葉大学大学院園芸学研究科教授)

手島 玲子 (岡山理科大学獣医学部教授)

要 約

「Bacillus subtilis NTI04 (pHYT2TD)株を利用して生産された α - グルコシルトランスフェラーゼ」について、食品健康影響評価を実施した。

本添加物は、Bacillus subtilis ISW1214 株を宿主として、Tepidibacillus decaturensis 由来の α -グルコシルトランスフェラーゼ遺伝子を含む発現プラスミド pHYT2TD を導入して作製した B. subtilis NTI04(pHYT2TD)株を利用して生産された α -グルコシルトランスフェラーゼである。本添加物は、デンプン加水分解物に作用し、 α -1,6-グルコシル転移反応を触媒する酵素として、 α -1,6-グルカンの製造に用いられる。

「遺伝子組換え微生物を利用して製造された添加物の安全性評価基準」(平成 16 年 3 月 25 日食品安全委員会決定)に基づき、挿入遺伝子の安全性、挿入遺伝子から産生されるタンパク質の毒性、アレルギー誘発性等について確認した結果、従来の添加物と比較して新たに安全性を損なうおそれのある要因は認められなかった。

したがって、「 $Bacillus \, subtilis \, NTIO4(pHYT2TD)$ 株を利用して生産された α -グルコシルトランスフェラーゼ」については、人の健康を損なうおそれはないと判断した。

I. 評価対象添加物の概要

(申請内容)

品 目: *Bacillus subtilis* NTI04(pHYT2TD)株を利用して生産された α - グルコシ ルトランスフェラーゼ

用 途: デンプン加水分解物に作用し、 α -1,6-グルコシル転移反応を触媒する酵素として、 α -1,6-グルカンの製造に用いられる

申請者:日本食品化工株式会社開発者:日本食品化工株式会社

本添加物は、 $Bacillus\ subtilis\ ISW1214$ 株を宿主として、 $Tepidibacillus\ decaturensis$ 由来の α -グルコシルトランスフェラーゼ (tdda) 遺伝子を含む発現プラスミド pHYT2TD を導入して作製した $B.\ subtilis\ NTI04$ (pHYT2TD)株を利用して生産された α -グルコシルトランスフェラーゼである。

Ⅱ. 食品健康影響評価

- 第1 安全性評価において比較対象として用いる添加物及び宿主等の性質並びに遺 伝子組換え添加物及び組換え体との相違
 - 1 従来の添加物の性質及び用途等に関する資料
 - (1) 名称、基原及び有効成分

従来の添加物の名称、基原及び有効成分は、以下のとおりである。

名 称: DDase-GO

基 原: Gluconobacter oxydans

有効成分: α-グルコシルトランスフェラーゼ

IUB No.: 2.4.1.2 CAS No.: 9032-13-7

(2) 製造方法

DDase-GO は、*G. oxydans* を生産菌として用い、培養、精製、製剤化等の工程を経て製造される。生産菌は、精製工程で分離、除去される。

(3) 用途及び使用形態

 α -グルコシルトランスフェラーゼは、デンプン加水分解物に作用し、 α -1,6-グルコシル転移反応を触媒する酵素であり、 α -1,6-グルカンを製造するために使用されている。

(4) 摂取量

DDase-GO を用いて製造された糖化品を添加する食品(その他の嗜好飲料、牛乳・乳製品、うどん・中華めん類等)において、その食品中に本酵素が 100% 残存すると仮定した場合の最大一日摂取量は、4.7 mg/kg 体重/日である(参照1)。

2 宿主及び導入 DNA

- (1) 宿主の種名(学名)、株名等及び由来 宿主は、B. subtilis ISW1214 株である。
- (2) DNA 供与体の種名、株名又は系統名等及び由来 *tdda* 遺伝子の供与体は *T. decaturensis、trpS* 遺伝子の供与体は *B. subtilis* ISW1214 株である。クロラムフェニコールアセチルトランスフェラーゼ (*cat*) 遺伝子の供与体は *Staphylococcus aureus* である。

(3) 挿入 DNA の性質及び導入方法

tdda 遺伝子は、 α -グルコシルトランスフェラーゼ(TDDA)をコードし、trpS遺伝子はトリプトファニル tRNA 合成酵素をコードする。

これらの遺伝子を含む発現プラスミド pHYT2TD を宿主に導入した。 *cat* 遺伝子は、クロラムフェニコールアセチルトランスフェラーゼ(CAT)をコードし、二重交差相同組換えによりゲノムに導入された。

3 宿主の添加物製造への利用経験又は食経験に関する資料

B. subtilis は、食品製造用酵素の生産菌として数多くの利用経験があり、長期にわたり食品製造に安全に使用されている(参照2)。

4 宿主の構成成分等に関する資料

B. subtilis が有害生理活性物質を生産するという報告はない。

5 遺伝子組換え添加物の性質及び用途等に関する資料

(1) 製品名及び有効成分

本添加物の製品名及び有効成分は以下のとおりである。

製品名:DDase-TD

有効成分: α -グルコシルトランスフェラーゼ(TDDA)

IUB No.: 2.4.1.2 CAS No.: 9032-13-7

(2) 製造方法

DDase-TD は、*B. subtilis* NTI04(pHYT2TD)株を生産菌として用い、製造される。製造方法は、従来の添加物と同様であり、培養、精製、製剤化等の工程を経て製造される。生産菌は、精製工程において分離、除去される。

(3) 用途及び使用形態

DDase-TD の有効成分である TDDA は、従来の添加物と同様に α -1,6-グルカンの製造に使用され、用途及び使用形態は、従来の添加物と変わらない。

(4) 有効成分の性質及び従来の添加物との比較

TDDA は、従来の添加物と同じ反応を触媒する酵素であるが、熱安定性が向上しており、反応生成物である α -1,6-グルカンの組成が異なる(参照 3)。

6 安全性評価において検討が必要とされる遺伝子組換え添加物と従来の添加物 及び組換え体と宿主等の相違点

(1) 遺伝子組換え添加物と従来の添加物

TDDA と従来の添加物との相違点は、アミノ酸残基数、至適 pH 及び温度、 熱安定性が向上している点並びに反応生成物の組成が異なる点である(参照 3)。

(2)組換え体と宿主

B. subtilis NTI04(pHYT2TD) 株と宿主との相違点は、*B. subtilis* NTI04(pHYT2TD)株は α -グルコシルトランスフェラーゼ産生能、テトラサイクリン耐性及びクロラムフェニコール耐性を有している点である。

1から6までより、本添加物と従来の添加物及び本添加物の生産菌と宿主は、それぞれ比較可能であると判断し、以下の各事項について評価を行った。

第2 宿主に関する事項

1 分類学上の位置付け(種名(学名)・株名等)に関する事項 宿主は *B. subtilis* ISW1214 株である。

2 病原性及び有害生理活性物質等の生産に関する事項

B. subtilis の病原性は知られておらず、有害生理活性物質を生産するという報告はない。また、国立感染症研究所病原体等安全管理規程に定めるバイオセーフティレベル(以下「BSL」という。)1に該当する。

3 寄生性及び定着性に関する事項

B. subtilis ISW1214 株に寄生性や定着性は報告されていない。

4 病原性の外来因子(ウイルス等)に汚染されていないことに関する事項

B. subtilis ISW1214 株は、病原性の外来因子の存在を示唆する事実は認められていない(参照 4)。

5 宿主の近縁株の病原性及び有害生理活性物質の生産に関する事項

B. subtilis の近縁種である *Bacillus cereus* 及び *Bacillus anthracis* は、毒性物質を生産することが知られているが、*B. subtilis* とは明確に区別されている。

第3 ベクターに関する事項

1 名称及び由来に関する事項

発現プラスミド pHYT2TD の作製には *Escherichia coli* 由来のプラスミド pACYC177 と *Streptococcus faecalis* 由来のプラスミド pAM α 1 から構築された プラスミド pHY300PLK が用いられた(参照 5)。

2 性質に関する事項

- (1) DNA の塩基数及びその塩基配列を示す事項 プラスミド pHY300PLK の塩基数及び塩基配列は明らかになっている(参照 5)。
- (2)制限酵素による切断地図に関する事項 プラスミド pHY300PLK の制限酵素による切断地図は明らかになっている。
- (3) 既知の有害塩基配列を含まないことに関する事項 プラスミド pHY300PLK の塩基配列は明らかになっており、既知の有害塩基 配列は含まれていない。
- (4)薬剤耐性に関する事項 プラスミド pHY300PLK にはテトラサイクリン耐性遺伝子及びアンピシリン耐性遺伝子が含まれている。(参照 5)。
- (5) 伝達性に関する事項 プラスミド pHY300PLK には伝達を可能とする塩基配列は含まれていない。
- (6) 宿主依存性に関する事項 プラスミド pHY300PLK の複製開始配列は、*Bacillus* 属、*Escherichia* 属及 び *Streptcoccus* 属で機能することが知られている。

第4 挿入 DNA、遺伝子産物、並びに発現ベクターの構築に関する事項

- 1 挿入 DNA の供与体に関する事項
- (1) 名称、由来及び分類に関する事項 tdda 遺伝子の供与体は T. decaturensis、trpS 遺伝子の供与体は B. subtilis ISW1214 株である。cat 遺伝子の供与体は S. aureus である
- (2) 安全性に関する事項

T. decaturensis 及び B. subtilis ISW1214 株は、ヒトに対する病原性及び毒素産生性は知られていない。また、これらは国立感染症研究所病原体等安全管理規程に定めるバイオセーフティレベル(BSL) 1 に相当する(参照 6)。

S. aureus は、毒素産生能を有しており BSL2 に分類されている。ただし、

cat 遺伝子に毒素産生に関する報告は確認されておらず、遺伝子産物である CAT に病原性は知られていない。

2 挿入 DNA 又は遺伝子(抗生物質耐性マーカーを含む。)及びその遺伝子産物の 性質に関する事項

(1) 挿入遺伝子のクローニング又は合成方法に関する事項

tdda遺伝子は、T. decaturensis の α - グルコシルトランスフェラーゼ遺伝子の塩基配列に基づき、B. subtilis での発現を最適化するための塩基変異を導入し、人工合成した遺伝子である。

trpS 遺伝子は、B. subtilis ISW1214 株の trpS 遺伝子をクローニングした後、塩基変異を導入した遺伝子である。

cat遺伝子は、pC194プラスミド上の配列を使用した。

- (2) 塩基数及び塩基配列と制限酵素による切断地図に関する事項 挿入 DNA の塩基数、塩基配列及び制限酵素による切断地図は明らかになっている(参照 7)。
- (3) 挿入遺伝子の機能に関する事項

tdda 遺伝子がコードする TDDA は、デンプン加水分解物に作用し、 α -1,6-グルコシル転移反応を触媒する酵素である。

- ①遺伝子産物の供与体のアレルギー誘発性に関する知見 *tdda* 遺伝子の供与体である *T. decaturensis* に関して、アレルギー誘発性について検索 a した結果、その報告はない。
- ②遺伝子産物についてのアレルギー誘発性に関する知見 α-グルコシルトランスフェラーゼに関して、アレルギー誘発性について検索 a した結果、その報告はない。
- ③ 遺伝子産物(タンパク質)の物理化学的処理に対する感受性に関する事項
 - a. 人工胃液に対する感受性

TDDAの人工胃液中における消化性について確認するために、SDS-PAGE 分析及びウェスタンブロット分析を行った。その結果、試験開始後 15 秒以内に消化されることが確認された(参照 8)。

b. 人工腸液に対する感受性

TDDAの人工腸液中における消化性について確認するために、SDS-PAGE 分析及びウェスタンブロット分析を行った結果、両試験において試験開始後 6 時間を経過しても消化されないことが示された(参照 8)。

9

a Google Scholar 及び PubMed(検索日:2020年10月)

c. 加熱処理に対する感受性

TDDA の加熱による免疫反応性の変化について ELISA 法を用いて分析した結果、酵素失活条件である pH 4.0、80 の加熱処理により 1 時間で抗TDDA 抗体への相対結合能が加熱前の 10%以下にまで低下した(参照 9)。

④ 遺伝子産物(タンパク質)と既知のアレルゲン(グルテン過敏性腸疾患に関するタンパク質を含む。以下「アレルゲン等」という。)との構造相同性に関する事項

TDDA と既知のアレルゲンとの相同性の有無を確認するために、アレルゲンデータベース bを用いて相同性検索を行った結果、既知アレルゲンと 80 アミノ酸配列で 35%以上の相同性を示す配列及び連続する 8 アミノ酸配列が既知のアレルゲンと一致する配列は見いだされなかった(参照 10)。

以上から、TDDAのアレルギー誘発の可能性は低いと考えられた。

3 挿入遺伝子及び抗生物質耐性マーカー遺伝子の発現に関わる領域に関する事項

(1) プロモーターに関する事項 tdda 遺伝子のプロモーターは Bacillus sp. JAMB750 株のマンナナーゼ遺伝 子のプロモーター配列由来である。

(2) ターミネーターに関する事項

tdda 遺伝子のターミネーターは Thalas somonas sp. JAMB-A33 株由来の α -アガラーゼ遺伝子のターミネーター配列由来である。

(3) その他、挿入遺伝子の発現制御に関わる塩基配列を組み込んだ場合には、その由来、性質等が明らかであること

本酵素を菌体外に分泌させるため、Bacillus sp. JAMB750 株由来マンナナーゼのシグナル配列に変異を導入して tdda 遺伝子の上流に付加した。

4 ベクターへの挿入 DNA の組込方法に関する事項

シクロデキストリングルカノトランスフェラーゼの発現プラスミド pHYT2G のシクロデキストリングルカノトランスフェラーゼ遺伝子及びシグナル配列を *tdda* 遺伝子及び上記シグナル配列に置換することによって、発現プラスミド pHYT2TD が作製された。

5 構築された発現ベクターに関する事項

(1) 塩基数及び塩基配列と制限酵素による切断地図に関する事項 発現プラスミド pHYT2TD の塩基数、塩基配列及び制限酵素による切断地図

b AllergenOnline version 21 (検索日: 2021年6月)

は明らかになっている(参照7)。

(2) 原則として、最終的に構築された発現ベクターには、目的以外のタンパク質を組換え体内で発現するオープンリーディングフレームが含まれていないこと

発現プラスミド pHYT2TD の全塩基配列について、6 つの読み枠においてオープンリーディングフレーム(以下「ORF」という。)検索を行った結果、終止コドンから終止コドンで終結する連続する 30 アミノ酸以上の目的以外のORF が挿入遺伝子領域に 84 個見いだされた。これらの ORF についてタンパク質データベース。を用いて blastp による相同性検索を E value<10 を指標にて行った結果、29 個の ORF に相同性が認められたが、既知の毒性タンパク質との相同性は見られなかった。また、既知のアレルゲンとの相同性の有無を確認するために、アレルゲンデータベース 6 を用いて相同性検索を行った結果、80 アミノ酸配列で 35%以上の相同性を示す ORF 及び連続する 8 アミノ酸配列が既知のアレルゲンと一致する配列は見いだされなかった(参照 7)。

(3) 宿主に対して用いる導入方法において、意図する挿入領域が発現ベクター上で明らかであること

意図する挿入領域は、発現プラスミドpHYT2TD の全塩基配列であり、宿主においてはプラスミドの状態で保持される。

(4) 導入しようとする発現ベクターは、目的外の遺伝子の混入がないよう純化されていること

発現プラスミド pHYT2TD は目的外の遺伝子の混入がないように構築されている。

6 DNA の宿主への導入方法に関する事項

発現プラスミド pHYT2TD をプロトプラスト法により宿主に導入後、テトラサイクリン耐性及びカナマイシン感受性を示す形質転換体を選抜することによって *B. subtilis* NTI04(pHYT2TD)株を得た。

7 抗生物質耐性マーカー遺伝子の安全性に関する事項

(1) 遺伝子及び遺伝子産物の特性に関する事項

発現プラスミド pHYT2TD 上にアンピシリン耐性遺伝子及びテトラサイクリン耐性遺伝子が存在し、*B. subtilis* NTIO4 (pHYT2TD) 株のゲノム DNA上にクロラムフェニコール耐性遺伝子である *cat* 遺伝子が存在する。アンピシリン耐性遺伝子は *B. subtilis* では発現しない。テトラサイクリン耐性遺伝子がコードする膜タンパク質は、細胞内からテトラサイクリンを能動的に排出することで耐性を付与する。*cat* 遺伝子は CAT をコードし、アセチル CoA のアセチル基

c NIH Non-redundant protein sequences (nr) (検索: 2019年 12月検索)

をクロラムフェニコールの水酸基へ転移させることで宿主にクロラムフェニコール耐性 を付与する。これらの遺伝子産物の有害性に関する報告はない(参照 11)。

(2) 遺伝子及び遺伝子産物の摂取に関する事項

DDase-TD に含まれるテトラサイクリン耐性遺伝子産物及びクロラムフェニュール耐性遺伝子産物の含有量を ELISA 法で測定した結果、それぞれ 0.125 $\mu g/mL$ 未満及び 0.025 $\mu g/mL$ 未満であった(参照 12)。

第5 組換え体に関する事項

1 宿主との差異に関する事項

B. subtilis NTI04(pHYT2TD)株と宿主の相違点は、TDDA 産生能、テトラサイクリン耐性およびクロラムフェニコール耐性を獲得している点である。

2 遺伝子導入に関する事項

(1) 制限酵素による切断地図に関する事項

発現プラスミド pHYT2TD の制限酵素による切断地図は明らかになっている (参照 7)。

(2) オープンリーディングフレームの有無並びにその転写及び発現の可能性に関する事項

宿主のゲノムに挿入された cat 領域および宿主ゲノムの接合領域について、 ORF 検索を行った結果、23 個検出された。これらの ORF と既知の毒性タンパク質 との相同性を検索するためタンパク質データベース dを用いて E value<10 を指標 にて検索した結果、既知の毒性物質との相同性は認められなかった。また、既知の アレルゲンとの相同性の有無を確認するために、アレルゲンデータベース b を 用いて検索を行った結果、80 アミノ酸配列で 35%以上の相同性を示す ORF 及 び連続する 8 アミノ酸配列が既知のアレルゲンと一致する配列は見いだされな かった (参照 13)。

第6 組換え体以外の製造原料及び製造器材に関する事項

1 添加物の製造原料又は製造器材としての使用実績があること

DDase-TD の製造原料は、食品又は食品添加物製造用として一般的に用いられているものを使用し、製造器材は、従来から食品用酵素剤の製造に用いられているものを使用する。

2 添加物の製造原料又は製造器材としての安全性について知見が得られていること

DDase-TD の製造原料は、食品又は食品添加物製造用として一般的に用いられ

d NIH Non-redundant protein sequences (nr) (検索: 2021年6月検索)

ているものを使用し、製造器材は、従来から食品用酵素剤の製造に用いられているものを使用する。

第7 遺伝子組換え添加物に関する事項

1 諸外国における認可、食用等に関する事項

DDase-TD は、海外での販売及び使用実績はない。

2 組換え体の残存に関する事項

DDase-TD に生産菌の残存がないことを培養法により確認している(参照14)。

3 製造に由来する非有効成分の安全性に関する事項

発酵培地原料は従来の食品用酵素の製造に用いられてきた原料である。また、 宿主である *B. subtilis* ISW1214 株が有害生理活性物質を生産するという報告は ない。したがって、適切な製造管理の下で製造が行われるならば、製造に由来す る非有効成分の安全性に問題はないと考えられる。

4 精製方法及びその効果に関する事項

DDase-TD は、生産菌の培養物から、ろ過、濃縮等の精製工程を経ることで得られる。適切な製造管理の下で製造が行われるならば、これらの工程において、安全性に問題のある物質が混入することはないと考えられる。

5 含有量の変動により有害性が示唆される常成分の変動に関する事項

DDase-TD の製造原料及び製造方法は、従来の食品用酵素の製造に使用されているものと同様であり、適切な製造管理の下で製造が行われるならば、含有量の変動により有害性が示唆される常成分の変動はないと考えられる。

第8 第2から第7までの事項により安全性の知見が得られていない場合に必要な 事項

第2から第7までにより、安全性の知見が得られている。

Ⅲ. 食品健康影響評価結果

「Bacillus subtilis NTI04(pHYT2TD)株を利用して生産された α - グルコシルトランスフェラーゼ」については、「遺伝子組換え微生物を利用して製造された添加物の安全性評価基準」(平成 16 年 3 月 25 日食品安全委員会決定)に基づき評価した結果、人の健康を損なうおそれはないと判断した。

<参照>

- 1. 平成30年国民健康・栄養調査報告(厚生労働省 令和2年3月)
- 2. Anne Sietske de Boer A. S., Diderichsen B., On the safety of *Bacillus subtilis* and *B. amyloliquefaciens*: a review, *Appl. Microbiol. Biotechnol.* **36** (1991) 1-4
- 3. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産 された α -グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 4α -グ ルコシルトランスフェラーゼ製剤を用いた α -1,6-グルカン含有糖化品の調製)
- 4. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 2 *Bacillus subtilis* NTI04 (pHYT2TD) 株の作製)
- 5. Ishiwa H., Shibahara-Sone H., New shuttle vectors for *Escherichia coli* and *Bacillus subtilis*. IV. The nucleotide sequence of pHY300PLK and some properties in relation to transformation, *Jpn J Genet.* **61** (1986) 515-528
- 6. 国立感染症研究所「病原体等安全管理規程」
- 7. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産 された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 1α グルコシルトランスフェラーゼの発現プラスミド pHYT2TD の DNA シーケンス)
- 8. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産 された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 5 人工胃液及び人工腸液に対する α グルコシルトランスフェラーゼの消化性)
- 9. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産 された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 6 加 熱処理における α グルコシルトランスフェラーゼの抗原抗体反応への影響)
- 10. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産 された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 7 α グルコシルトランスフェラーゼのアレルギー誘発性に関する調査)
- 11. Horinouchi S., Weisblum B., Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenical resistance, *journal of Bacteriology*. **150** (1982) 815-825
- 12. 日食研究報告書 (2020) *Bacillus subtilis* NTI04 (pHYT2TD) 株を利用して生産された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 8 α グルコシルトランスフェラーゼ製剤中の抗生物質耐性遺伝子及びその産物の含有量)
- 13. 日食研究報告書 (2020) Bacillus subtilis NTI04 (pHYT2TD) 株を利用して生産された α -グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 9 ゲノム DNA 上のクロラムフェニコール耐性遺伝子およびその周辺配列のシーケンス解析と ORF 検索)
- 14. 日食研究報告書 (2020) Bacillus subtilis NTI04 (pHYT2TD) 株を利用して生産 された α グルコシルトランスフェラーゼの安全性評価に係る報告書 (その 3 DDase-TD の調製)

「Baci / lus subti / is NTIO4 (pHYT2TD) 株を利用して生産された α - グルコシルトランスフェラーゼ」に係る食品健康影響評価に関する審議結果 (案) についての意見・情報の募集結果について

- 1. 実施期間 令和4年1月26日~令和4年2月24日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 1件
- 4. 意見・情報及び食品安全委員会の回答

意見・情報**

- ・わずか数十年程度の知見に限られている遺伝子組換品については、中・長期的な影響はまだまだ判断できないはず。遺伝子組換品は、100%の安全性が断言できるまで、使用を禁止すべき。
- ・にもかかわらず、本件のように「デンプン加水分解物に作用し、 α -1,6-グルカンを製造するために使用」のために、遺伝子技術を使うのは論外。伝統的な製法に回帰すれば済む話。
- ・日本ではすでに500種以上の遺伝子組換成分[飼料用含む]が承認されており、この数字はダントツの世界一のレベルと思われるが、これ以上増やすのはやめていただき、いったんすべての遺伝子組換品の流入を停止いただきたい。
- ・これだけ多くの遺伝子組換品 を流入させているのに、健康影 響を見るときは、いつも単品で

食品安全委員会の回答

食品安全委員会は、国民の健康の 保護が最も重要であるという基本 的認識の下、規制等のリスク管理を 行う行政機関から独立して、科学的 知見に基づき客観的かつ中立公正 に食品健康影響評価を行っていま す。この食品健康影響評価は、食品 安全基本法第11条第3項に基づき、 その時点において到達されている 水準の科学的知見に基づいて行う こととしております。

また、食品健康影響評価は、申請者の提出した資料をもとに行いますが、これまでの科学的知見や海外での評価結果も踏まえ、資料の内容についての問題点、疑問点については説明や再提出を求めるとともに、調査会の審議において、資料の内容が不足していると判断された場合は、追加試験等のデータを含め必要な追加資料の提出を求めています。

本添加物については、「遺伝子組 換え微生物を利用して製造された 添加物の安全性評価基準」(平成 16 しか見ていない。(残留農薬や添加物も含めた)複合影響も確認すべき。複合影響を検証できないなら、検証できるまで認めるべきではない。

・審査にあたっては、申請者が 提出した資料に基づいており、 14 資料のうち 9 が社内資料で ある。申請者に有利なものに偏 るのは当然であり、検証は、全 て第三者によって実施されたも のに限定して審査すべき。 年3月25日食品安全委員会決定) に基づき、挿入遺伝子の安全性、挿 入遺伝子から産生されるタンパク 質の毒性、アレルギー誘発性等につ いて確認した結果、人の健康を損な うおそれはないと判断しました。

また、遺伝子組換え食品を摂取することによる複合影響に関しましては、従来品との同等性を踏まえ、安全性を個々に確認することで、食品としての安全性は担保されるものと考えております。

なお、本添加物の使用、遺伝子組換 え品の流入についての御意見は、リ スク管理に関するものと考えられ ることから、厚生労働省へお伝えし ます。

※ 頂いた意見・情報はそのまま掲載しています。